Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 665: 871-878, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38564951

RESUMO

Recently, there has been a great interest in the study of photocatalysts (PCs) and photosensitizers (PSs) in the field of organic photocatalysis. In the present study, a pure organic thermally activated delayed fluorescence (TADF) molecule 4,4'-(12-(pyridin-4-yl)dibenzo[f,h]pyrido[2,3-b]quinoxaline-3,6-diyl)bis(N,N-diphenylaniline) (DPQ-TPA) was designed and synthesized, which not only have excellent TADF property and small energy splitting (ΔEST), but also can self-assembly in water to form cross-linked nanoparticles with exceptional aggregation-induced emission (AIE) characteristics. DPQ-TPA exhibits excellent remarkable selectivity and notably enhances the production capacity of reactive oxygen species (ROS), particularly 1O2, which was employed as a highly effective photocatalyst in the photooxidation reaction of phosphine and hydroazobenzenes under blue light irradiation with high yields up to 94% and 91%, respectively. This work expands the potential application of (donor-acceptor) D-A type AIE-TADF molecules in photocatalytic organic transformations through supramolecular self-assembly.

2.
Chem Commun (Camb) ; 60(32): 4310-4313, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38533635

RESUMO

Benzaldehydes are indispensable building blocks in chemistry. However, the selective oxidation of toluene to benzaldehyde remains an ongoing challenge due to the low oxidation potential of benzaldehyde compared to toluene. We report herein a mild protocol that combines hydrogen atom transfer (HAT) with encapsulated air conditions and suitable catalyst loading for selective oxidation of toluene with high selectivity as well as good functional-group tolerance and a broad substrate scope for the synthesis of various high-value aromatic aldehydes. Moreover, the compatibility of this reaction with toluene derivatives of bioactive molecules further demonstrated the practicality of this approach. Mechanism studies have demonstrated that the collaboration between the oxygen quantity and the HAT catalytic system has a major impact on the high selectivity of the reaction. This study not only showcases the effectiveness of HAT strategies toward selective oxidation of toluene to benzaldehyde, but also provides an approach to controlling the selectivity of HAT reactions.

3.
Chem Commun (Camb) ; 60(17): 2409-2412, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38323602

RESUMO

Due to the high C-H bond dissociation energy of alkanes, the utilization of alkanes as alkyl radical precursors for C-H functionalization of heteroarenes is synthetically captivating but practically challenging, especially under metal- and photocatalyst-free conditions. We report herein a mild and practical visible-light-mediated method for C-H alkylation of quinoxalin-2(1H)-ones using trifluoroacetic acid as a hydrogen atom transfer reagent and air as an oxidant. This mild protocol was performed under metal- and photocatalyst-free circumstances and presented good functional-group tolerance as well as a broad substrate scope.

4.
Chem Sci ; 15(5): 1870-1878, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38303940

RESUMO

The competitive nature of type II photosensitizers in the transfer of excitation energy for the generation of singlet oxygen (1O2) presents significant challenges in the design of type I photosensitizers to produce the superoxide anion radical (O2˙-). In this study, we present an efficient method for the direct transformation of type II photosensitizers into type I photosensitizers through the implementation of an artificial light-harvesting system (ALHSs) involving a two-step sequential energy transfer process. The designed supramolecular complex (DNPY-SBE-ß-CD) not only has the ability to generate 1O2 as type II photosensitizers, but also demonstrates remarkable fluorescence properties in aqueous solution, which renders it an efficient energy donor for the development of type I photosensitizers ALHSs, thereby enabling the efficient generation of O2˙-. Meanwhile, to ascertain the capability and practicality of this method, two organic reactions were conducted, namely the photooxidation reaction of thioanisole and oxidative hydroxylation of arylboronic acids, both of which display a high level of efficiency and exhibit significant catalytic performance. This work provides an efficient method for turning type II photosensitizers into type I photosensitizers by a two-step sequential energy transfer procedure.

5.
ChemSusChem ; 17(8): e202301686, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38135666

RESUMO

Carbon dots (CDs) are a type of carbon-based luminescent material with a zero-dimensional structure and a size of less than 10 nm, which are composed of sp2/sp3 hybrid carbon nuclei and surface functional groups. Because CDs has strong photoluminescence and good light absorption in the ultraviolet and near visible regions, it is an excellent candidate for photocatalytic applications. However, the use of nonmetallic doped CDs as photosensitizers for direct photocatalytic organic reactions has been limited to several scattered reports. Herein, we present nitrogen-doped carbon dots (N-CDs) that has a capability for not only produce reactive oxygen species (ROS), including superoxide anion radical (O2⋅-) and singlet oxygen (1O2), but also provide an unprecedented high activity of dehalogenative oxyalkylation of styrene with a yield of 93 %. This work develops a novel opportunity to utilize cost-effective and easily accessible CDs for the advancement of photocatalysis.

6.
ACS Appl Mater Interfaces ; 15(48): 55803-55812, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-37983520

RESUMO

In recent years, there has been a notable surge of interest in the fields of organic and pharmaceutical research about photocatalysts (PCs) and photosensitizers (PSs). In this study, a 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) molecule adorned with quaternary ammonium (TMB) functionality was meticulously designed and synthesized. This compound has remarkable characteristics such as exceptional water solubility, great optical qualities, and commendable photostability. It can form a 1:1 complex (TMB-CB[7]) with cucurbit[7]uril (CB[7]) through host-guest interactions in the aqueous solution and shows obvious fluorescence enhancement. The reactive oxygen species (ROS) including superoxide anion radical (O2·-) and singlet oxygen (1O2) generation ability of TMB-CB[7] were promoted compared with that of TMB in the aqueous solution. More interestingly, the ROS generated from TMB-CB[7] can be used as PCs for aerobic cross dehydrogenation coupling reactions and photooxidation reactions in water with high yields of 89 and 95%, respectively. Therefore, the utilization of a host-guest PS presents a novel and environmentally friendly approach for conducting photocatalyzed organic processes under ambient conditions using visible light.

7.
Chem Commun (Camb) ; 59(89): 13301-13304, 2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-37859495

RESUMO

An artificial light-harvesting system (ALHS) was developed in aqueous solution by employing the electrostatic co-assembly of a tetraphenylethylene derivative modified with two sulfonate groups (TPE-BSBO) and hyperbranched polyethyleneimine (PEI) as the energy donors, and 4,7-bis(2-thienyl)-2,1,3-benzothiadiazole (DBT) as the energy acceptors. The ALHS exhibits not only high efficiency in energy transfer and conversion but also a significant enhancement in the generation of reactive oxygen species (ROS), especially superoxide anion radicals (O2˙-), facilitating its utilization in photocatalytic oxidation reactions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA